Idiopathic intracranial hypertension (IIH) is a disorder of overweight women in the childbearing age characterized by increased intracranial pressure with its associated signs and symptoms in alert and oriented patients. Neuroimaging and cerebrospinal fluid (CSF) analysis is normal except for increased intracranial pressure and its associated symptoms and signs. Also, no secondary cause of intracranial hypertension is apparent. This set of criteria comprises the modified Dandy criteria (Box 1). In the last 3 years, there has been an explosion of publications on IIH, with a PubMed search revealing more than 500 articles. In this review, the authors discuss the most important of these articles, especially those generated from the Idiopathic Intracranial Hypertension Treatment Trial (IIHT).

Before 3 years ago, a Cochrane review concluded: “There is insufficient information to generate an evidence-based management strategy for idiopathic intracranial hypertension.”

Disclosure statement: No relevant disclosures.
University of Iowa College of Medicine, Veterans Administration Hospital, Iowa City, IA 52242, USA
E-mail address: michael-wall@uiowa.edu

Neurol Clin 35 (2017) 45–57
http://dx.doi.org/10.1016/j.ncl.2016.08.004
0733-8619/17/© 2016 Elsevier Inc. All rights reserved.
hypertension. There is inadequate information regarding which treatments are truly beneficial and which are potentially harmful. Properly designed and executed trials are needed.” In April 2014, the IIHTT results were published in the Journal of the American Medical Association. This trial gave us the first evidenced-based approach relating to a protocol that significantly improved visual function in IIH.

THE IDIOPATHIC INTRACRANIAL HYPERTENSION TREATMENT TRIAL

In 1897, Quincke reported the first cases of IIH shortly after he introduced the lumbar puncture into medicine. It was named pseudotumor cerebri in 1904 but was not well delineated clinically until the 1940s when cerebral angiography was added to pneumoencephalography to identify cases of cerebral mass lesions. Foley coined the term benign intracranial hypertension in 1955; but reports from the 1980s demonstrated a high incidence of visual loss, and the term benign is no longer appropriate.

Lubow and Kuhr reported a series of patients with IIH, many of whom were treated successfully with acetazolamide and weight reduction. The latter, another mainstay of medical therapy, was further shown to be a viable treatment by others. Gücer and Viernstein used intracranial pressure monitoring and showed gradual CSF pressure reduction in patients receiving acetazolamide once they reached a dosage of 3 to 4 g/d. These uncontrolled studies were the basis for using acetazolamide in the maximally tolerated dosage to treat IIH.

The IIHTT is a multicenter, double-blind, randomized placebo-controlled study of acetazolamide in subjects with IIH with mild visual loss. The trial structure and flow is found in Fig. 1. All subjects received a lifestyle modification program that included weight reduction with a low-sodium diet. The purpose of the trial was to determine the effect of acetazolamide in reducing or reversing visual loss after 6 months of treatment.

Subjects needed to meet the modified Dandy criteria for IIH and be aged 18 to 60 years. They needed to have reproducible mild visual loss (−2 to −7 dB perimetric mean deviation [PMD]). Participants needed to have bilateral papilledema, have an elevated CSF opening pressure, be untreated with regard to IIH, and have no secondary cause of increased intracranial pressure present.

Subjects were randomly assigned to receive a supervised lifestyle modification program that included a low-sodium weight-reduction diet either with acetazolamide or with matching placebo. The initial dosage of the study drug was 4 tablets daily in 2 divided doses, followed by dosage increases of 1 tablet every week up to a maximum

<table>
<thead>
<tr>
<th>Box 1</th>
<th>The modified Dandy criteria for idiopathic intracranial hypertension used in the Idiopathic Intracranial Hypertension Treatment Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Signs and symptoms of increased intracranial pressure</td>
</tr>
<tr>
<td>2.</td>
<td>Absence of localizing findings on neurologic examination</td>
</tr>
<tr>
<td>3.</td>
<td>Absence of deformity, displacement, or obstruction of the ventricular system and otherwise normal neurodiagnostic studies, except for evidence of increased CSF pressure (>200 mm water) (Abnormal neuroimaging except for empty sella turcica, optic nerve sheath with filled-out CSF spaces, and smooth-walled non-flow-related venous sinus stenosis 106 should lead to another diagnosis.)</td>
</tr>
<tr>
<td>4.</td>
<td>Awake and alert</td>
</tr>
<tr>
<td>5.</td>
<td>No other cause of increased intracranial pressure present</td>
</tr>
</tbody>
</table>
dosage of 4 g/d for participants receiving acetazolamide. The dosage escalation was stopped if the participant's papilledema grade became less than 1 in both eyes and the PMD improved to −1 dB or better in each eye, unless the presence of other symptoms, such as headache or pulse synchronous tinnitus, suggested that the dosage escalation continue.

In the IIHTT, 161 women and 4 men were enrolled with an average age of 29.0 years (range 18–52 years). Fig. 2 shows the frequency of symptoms at baseline. The baseline characteristics were comparable in the two treatment groups; additional baseline information is published elsewhere. There were 7 participants whose vision worsened to meet the end point of treatment failure in the trial, with 6 treatment failures in the placebo group and 1 in the acetazolamide group ($P = .06$). Patients with IIH with
high-grade papilledema, daily transient visual obscurations, and decreased visual acuity at baseline were more likely to experience treatment failure. Patients with this profile should be treated more aggressively.10

Both treatment groups experienced improvement in PMD over time in the study eye (Fig. 3), with the mean improvement in the acetazolamide group being significantly larger than that in the placebo group at month 6 ($P = .05$).2 Most of the improvement related to acetazolamide took place in the first month of the intervention. Interestingly, the treatment effect on the primary outcome variable, PMD, was substantially greater (2.27 dB) in those with a baseline papilledema grade of 3 to 5 than in those with a baseline papilledema grade of 1 to 2 (−0.67 dB).2 Therefore, those with moderate- to high-grade papilledema are the patients who benefit most from treatment with maximally tolerated dosages of acetazolamide.
Visual acuity was mildly decreased at baseline (Fig. 4). This finding is especially notable when one factors in that visual acuity should be at least 20/15 in this age group. With treatment, acuity improved modestly; but the change was not statistically significant at 6 months. Perimetry is a much better measure to use to follow patients with IIH than visual acuity.

The visual field defects found at baseline were typical for IIH. The prototype defect was an enlarged blind spot coupled with an inferior nasal nerve fiber bundle defect (Fig. 5). However, there was usually mild loss across the visual field; although in the more central portions of the visual field, the loss did not reach the 95th percentile cutoff for abnormality.

There was significant improvement in the Frisén papilledema grade associated with acetazolamide treatment in the study eye and in the fellow eye (Fig. 6). As with mean deviation, most of the benefit from acetazolamide was in the first month.

Acetazolamide-treated participants also experienced significant improvement in quality-of-life measures, including the Visual Functioning Questionnaire-25 total score and its 10-item neuro-ophtalmic supplement as well as the 36-Item Short Form Physical Component Summary and Mental Component Summary scores. Positive acetazolamide-related effects on quality of life seemed to be primarily mediated by improvements in visual field, neck pain, pulsatile tinnitus, and dizziness/vertigo that outweighed the side effects of acetazolamide. No significant acetazolamide treatment effects were noted with respect to headache disability (Headache Impact Test-6 total score) as both treatment groups had improved HIT scores. This finding may be due to subjects having concomitant analgesic rebound headaches, and both groups received additional headache medications (usually naproxen sodium or low-dosage amitriptyline).

Fig. 4. ETDRS score of worst eye plotted against best eye. Shaded areas indicate vision of 20/20 or better.
With regard to CSF pressure, the decrease in CSF pressure in the acetazolamide group was -112.3 mm H$_2$O and was -52.4 mm H$_2$O in the placebo group giving a treatment effect of -59.9 mm H$_2$O ($P = .002$; Fig. 7).

Clinical improvement in IIH has been reported to be associated with about 6% weight loss. 12 Participants on acetazolamide lost more weight over 6 months (mean -7.50 kg, from 107.72 kg to 100.22 kg) than those on placebo (mean -3.45 kg, from 107.72 kg to 104.27 kg) (treatment effect -4.05, $P < .001$). Acetazolamide also led to reductions in waist circumference and systolic and diastolic blood pressure. 2 A mediation analysis concluded the effect of acetazolamide on improved visual function was independent of the amount of weight loss.

Misconceptions about weight loss and the IIHTT: There have been some misconceptions about what the IIHTT found with regard to weight loss. The trial did not compare...
acetazolamide with weight loss. It compared acetazolamide with placebo in the setting where all were receiving a weight loss intervention. The IIHTT cannot estimate an effect of weight loss, as the authors did not design their study to determine the effect of weight loss. The authors did not find that both acetazolamide and weight loss improved visual field function; acetazolamide improved visual field function in a setting of weight reduction. Weight loss might have improved vision as well, but the authors cannot determine this without studying people who did not have a weight loss intervention.

The authors also did not show what percent weight loss is required to have resolution of IIH. They do not know if these people would have had resolution even without a weight loss intervention because they did not have this control group. Also, the authors do not know if acetazolamide would work the same way if given in a setting without a concurrent weight loss intervention.

In the trial, 48 eyes from 35 subjects met the visual field criteria for possible treatment failure. Seven subjects were found to have treatment failure. On retest, these other subjects had their PMD return to acceptable limits. Four of the variable performance subjects had large changes on retest and were reviewed by the adjudication committee and determined to be "performance failures" (temporary substantial worsening of PMD).

Adverse events that occurred in greater than 5% of study participants did not cause permanent morbidity, including 9 serious adverse events. Although paresthesia, dysgeusia, vomiting, diarrhea, nausea, and fatigue were higher in the acetazolamide group than in the placebo group, quality-of-life measures were superior in the acetazolamide group. A mild decrease in mean potassium level was also seen with acetazolamide, but this did not require potassium supplementation in any participants. No significant changes in sodium levels or in liver function tests were apparent with acetazolamide except for the case noted earlier.

Average compliance (as measured by counts of dispensed and returned pills) was 89% in the acetazolamide group and 93% in the placebo group. The mean (standard deviation) dose of study medication that participants were taking at the conclusion of their participation was 2.5 g (1.5 g) in the acetazolamide group and 3.5 g (1.1 g) in the placebo group (Fig. 8).
A limitation of the study is the 19% withdrawal rate, although the frequency of and reasons for withdrawal were similar in the two treatment groups. This rate may be due, in part, to the intensity of the visit schedule. More subjects on acetazolamide than on placebo discontinued treatment, most of whom completed follow-up, which may have attenuated the estimated treatment effect.

The results of the IIHTT, a multicenter, randomized, double-masked, placebo-controlled study of acetazolamide in subjects with mild visual loss, demonstrate improvements in visual field function, papilledema grade, and quality-of-life measures (Box 2). The authors recommend using the maximally tolerated dosage, up to 4 g daily, of acetazolamide with a low-sodium, weight-reduction diet in patients with IIH with mild visual loss.

What Have We Learned from the Idiopathic Intracranial Hypertension Treatment Trial?

- Acetazolamide, when used in subjects with IIH with mild visual loss, produces a modest improvement in PMD over 6 months. The improvement is much greater in subjects with moderate- to high-grade papilledema.
- Acetazolamide has its greatest effect on visual field function and papilledema in the first month of escalating dosage.

Box 2

The Idiopathic Intracranial Hypertension Treatment Trial showed statistically significant effects of acetazolamide to

- Improve visual field function
- Decrease papilledema grade
- Improve quality-of-life measures
- Decrease CSF pressure
Acetazolamide-plus-diet subjects lost twice as much weight as placebo-plus-diet subjects, but the acetazolamide effect on PMD was independent of the weight loss.

Treatment failure was much less common in the acetazolamide-plus-diet group compared with the placebo-plus-diet group, and risk factors for treatment failure were presence of high-grade papilledema and lower ETDRS (Early Treatment Diabetic Retinopathy Study) visual acuity measures at baseline.

Many IIHTT subjects tolerated maximal dosages of acetazolamide. Although there were many expected side effects, quality-of-life measures were significantly better in the acetazolamide-plus-diet group. There was no permanent morbidity from acetazolamide use.

Positive acetazolamide-related effects on quality of life seemed to be primarily mediated by improvements in visual field, neck pain, pulsatile tinnitus, and dizziness/vertigo that outweighed the side effects of acetazolamide.

Patients with IIH on acetazolamide as the only diuretic do not need potassium supplementation.

Perimetry performance failures were common and were characterized by major worsening of the PMD with no change or improvement in other clinical measures.

OTHER RECENT ADVANCES IN IDIOPATHIC INTRACRANIAL HYPERTENSION

Ocular Coherence Tomography

Optical coherence tomography (OCT) is a noninvasive high-resolution (micron scale) optic nerve and retinal microstructure imaging procedure that uses light waves to take cross-section pictures by measuring backscattered or back-reflected light. There have been a variety of advances in OCT measures related to IIH over the past few years.\(^{15,16}\) For example, the subsurface contour of the peripapillary retinal pigment epithelium/basement membrane junction has been shown to change with CSF pressure–lowering interventions.\(^{17}\) This change can be considered a marker of structural change in IIH related to papilledema. Also, changes in the peripapillary retinal nerve fiber layer and optic nerve head volume correlate well with changes and papilledema grade. These measures provide a continuous variable rather than a categorical one and show much promise, especially for use in clinical trials. Care must be taken in individual patients though, because damage to retinal ganglion cell axons will also result in decreased optic nerve head volume.\(^{15,16,18}\) These OCT methods are both sensitive to change and have excellent retest variability. In addition, the ganglion cell layer analysis may also show evidence of damage to the central 7° of the visual field, but care must be used in its interpretation because of the presence of imaging artifacts when there is moderate to severe optic disc edema present.

Choroidal wrinkles and folds are a common accompaniment to papilledema occurring in about 40% of patients with IIH. Sibony and colleagues\(^{19}\) have studied choroidal folds in IIHTT subjects with both fundus photos and OCT. They identified 3 types of folds: peripapillary wrinkles occurring in 26% of photos, retinal folds in 19% of photos, and choroidal folds in 1%. Although 41% of patients have wrinkles or folds with photos, 73% have them with OCT.\(^{19}\) The presence of these wrinkles and folds is an important feature in differentiating true optic disc edema from pseudopapilledema.

Medical Therapies

New findings using motivational interviewing (MI) to treat weight loss. MI is a counseling approach used to elicit behavior change that uses a collaborative patient-centered form of guiding to elicit and strengthen motivation for change. It relies on
the presence of ambivalence toward the goal (by discussing and making a choice between the pros and cons of losing weight) and assists patients to actively develop their own plan to improve their health. A meta-analysis of randomized controlled trials using MI techniques to aid weight loss showed a reduction in body weight for an intervention group compared with controls of 3.24 lb.20

Sinclair and coworkers21 prospectively studied intracranial pressure in women with IIH treated with a low-energy diet (a diet of foodstuffs with high volume and low calories like fresh fruits and vegetables). Twenty-five women with a body mass index (BMI) greater than 25 with IIH were treated with a 425-kcal/d diet. They found with significant reductions in weight (mean 15.7 kg), intracranial pressure decreased (mean 80 cm water, $P<.001$). Three months after the diet was discontinued, they showed no significant change in weight, and the improvement in CSF pressure was maintained.

Surgical Therapies

Case series continue to be published regarding various surgical therapies. Fonseca and colleagues22 compared post optic nerve sheath fenestration (ONSF) visual function with post CSF shunt visual function and found a trend toward worse preoperative acuity in the ONSF cohort. Postoperative mean deviation improved by 6.35 dB in the shunted group and 6.21 dB in the ONSF group. Rizzo and coworkers reported shunting results on visual field function in 15 patients with IIH. The mean visual field mean deviation improvement was 5.63 dB. They conclude CSF shunting results in improvement in perimetry, retinal nerve fiber layer swelling, and papilledema grade in patients with IIH. Huang and colleagues23 studied 19 shunted patients with IIH and found significant improvements in acuity but not visual field function (some of the subjects had already failed optic nerve sheath fenestration). These 3 articles are the first ones to investigate preoperative and postoperative automated visual field function in CSF shunting for IIH.

It has been known for years that CSF shunting only relieved headache in about half of the patients with IIH.24 de Souza and colleagues25 studied shunted patients with the diagnosis of medication overuse headache. In 180 shunted patients, 8.3% had medication overuse headaches and 12 of the 15 patients had undergone multiple shunt revisions. They concluded shunt patients should be counseled regarding medication overuse headaches.

There continue to be small uncontrolled case series of patients with IIH treated with stenting of the lateral (transverse) venous sinus; there are many apparent successes and occasional morbidity with repeat stenting occasionally needed. Subdural hematomas, subarachnoid hemorrhage, malignant cerebral edema, and prolonged anticoagulation temper the enthusiasm for this procedure. The pros and cons are discussed in a recent review.26 Although a biologically plausible rationale for stenting selected patients with IIH with bilateral transverse sinus stenosis refractory to medical treatment exists, until there is a randomized controlled clinical trial, evidence to document efficacy, its place in the IIH treatment armamentarium remains uncertain.

A meta-analysis of 457 articles on surgical treatment of IIH yielded 30 studies with meaningful data, all with class III evidence of efficacy. A total of 332 patients were treated by ONSF, 287 by lumboperitoneal shunt (LPS), 61 by ventriculoperitoneal shunt (VPS), and 88 by dural venous sinus stenting. Visual acuity improved in 49.3%, 56.6%, 67.2%, and 84.6% of patients following VPS, LPS, ONSF, and stent placements, respectively, in these highly selected series. Shunt revision was more frequent for LPS compared with VPS. Similar improvement in visual outcomes occurred across treatment strategies. The investigators conclude there is insufficient evidence to recommend or reject any treatments modalities for IIH.27
Bariatric surgery has been used successfully to treat IIH for many years. Fridley and colleagues28 reviewed the literature on the effectiveness of bariatric surgery for obese patients with IIH. They found 11 relevant publications reporting a total of 62 patients. The Roux-en-Y gastric bypass was the most common bariatric procedure used. Fifty-six (92\%) of 61 patients with recorded postoperative clinical history had resolution of their presenting IIH symptoms following bariatric surgery. Thirty-four (97\%) of 35 patients who had undergone preoperative and postoperative fundoscopy were found to have resolution of papilledema with the procedure. Eleven (92\%) of 12 patients who had undergone preoperative and postoperative formal visual field testing had complete or nearly complete resolution of visual field deficits. In 13 patients both preoperative and postoperative CSF pressures were recorded, with an average postoperative pressure decrease of 254 mm H\textsubscript{2}O. The investigators conclude published class IV evidence suggests that bariatric surgery may be an effective treatment of IIH in morbidly obese patients, both in terms of symptom resolution and visual outcome. The authors discuss gastric surgery in their patients with IIH with morbid obesity (BMI >40).

New Neuro-Audiologic Findings

Butros and coworkers have shown that chronically elevated CSF pressure can lead to osseous erosions, including widening of the foramen ovale and other canals and ostia. These findings may serve as a new imaging marker for IIH. But the foramen ovale can be difficult to visualize on standard MRI scans. The investigators found average foramen ovale sizes were increased in patients with IIH compared with controls, with a sensitivity of 50\% and 81\% specificity to detect IIH. Sensitivity and specificity of empty sella (65.9\% vs 0\%), posterior globe flattening (65.9\% vs 4.5\%), vertical tortuosity of the optic nerve (54.5\% vs 9.1\%), and optic nerve sheath distention (52.3\% vs 11.4\%) were statistically significant.29

Maralani and colleagues30 also studied the accuracy of MRI in the diagnosis of IIH. In this study, 43 IIH cases and 43 controls had an MRI and magnetic resonance venogram. Partially empty sella had a sensitivity of 65.0\% to detect IIH with a specificity of 95.3\%; sensitivity and specificity for flattening of the posterior globes were 54\% and 100\% and 63\% and 100\% for combined stenosis score less than 4, respectively. The presence of one sign, or any combination, significantly increased the odds of a diagnosis of IIH. Their absence, however, did not rule out IIH.

Berdahl and colleagues31 showed that BMI has a linear relationship with CSF pressure. They retrospectively studied 4235 patients undergoing lumbar puncture done at the Mayo Clinic that also had data to calculate a BMI. They found the increase in CSF pressure with increasing BMI was linear with an ($P<.001$). CSF pressure increased by 37.7\% from a BMI of 18 (8.6 ± 2.1 mm Hg) to a BMI of 39 (14.1 ± 2.5 mm Hg). Unfortunately the r^2 was only 0.20, limiting the utility of correcting CSF pressure for BMI.

As discussed earlier, the transverse sinus is narrowed with increased ICP. Rohr and coworkers32 have measured the full dural sinus tree in IIH using MRV. They studied 17 patients before and after treatment of IIH along with 7 controls. They found stenoses of the transverse sinuses resulting in cranial venous outflow obstruction in 15 of 17 (88\%) of the patients with IIH. They found the obstruction normalized in 7 of 15 cases (47\%) after treatment of IIH. Cranial venous outflow obstruction was not detected in the control group. Segmentation of MRV revealed decreased dural sinus volumes in general in patients with IIH compared with controls ($P = .018$). Sinus volumes increased significantly with normalization of CSF pressure, independent from resolution of transverse sinus stenoses ($P = .007$). They concluded there is a reduced volume of the venous sinus tree in IIH, which improves treatment of ICP.
REFERENCES

